ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
William E. Kastenberg
Nuclear Science and Engineering | Volume 37 | Number 1 | July 1969 | Pages 19-29
Technical Paper | doi.org/10.13182/NSE69-A20895
Articles are hosted by Taylor and Francis Online.
A general formalism for the determination of stability criteria by the method of comparison functions is derived for nuclear reactors whose system dynamics are governed by a coupled set of space-dependent nonlinear differential equations. The results obtained are applicable to the nonlinear multigroup diffusion equations with temperature feedback. A stability criterion for the nontrivial equilibrium state is presented in a theorem. In addition, two corollaries are presented for the particular cases of negative feedback. The criteria so obtained represent a measure of the “dissipative” forces as estimated by the eigenvalues of the linearized problem vs a measure of the “disruptive” forces caused by the feedback. If the net effect is dissipative then the system is asymptotically stable in the sense of Lyapunov. Two examples are presented to illustrate the formalism and use of the criteria. In the second example, a stability criteria for two-group theory with linear temperature feedback is derived directly from the equations of motion by this method.