ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Herbert Henryson, II, David S. Selengut
Nuclear Science and Engineering | Volume 37 | Number 1 | July 1969 | Pages 1-18
Technical Paper | doi.org/10.13182/NSE69-A20894
Articles are hosted by Taylor and Francis Online.
An approximate formalism is derived for solving problems in the one-velocity transport of neutrons in convex, isotropically scattering media. The integral transport equation is transformed to an equivalent infinite medium problem to which the synthetic kernel method may be applied. It is then shown that the neutron flux may be approximated by the solution of a set of coupled-diffusion type differential equations. These equations and their related boundary conditions are of the same form as the few-group diffusion equations so that solution may be obtained by use of existing multidimensional computer codes. Finally, the new formalism is applied to a number of simplified, though realistic, problems and the results are compared with corresponding results provided either by rigorous treatment or by other approximate theories. In general, the accuracy of the formalism and the computational effort required are comparable with the simplified spherical harmonics method. In addition, the flexibility available in choosing the parameters of the synthetic kernel offers the possibility of tailoring kernels to specific design problems.