ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
Herbert Henryson, II, David S. Selengut
Nuclear Science and Engineering | Volume 37 | Number 1 | July 1969 | Pages 1-18
Technical Paper | doi.org/10.13182/NSE69-A20894
Articles are hosted by Taylor and Francis Online.
An approximate formalism is derived for solving problems in the one-velocity transport of neutrons in convex, isotropically scattering media. The integral transport equation is transformed to an equivalent infinite medium problem to which the synthetic kernel method may be applied. It is then shown that the neutron flux may be approximated by the solution of a set of coupled-diffusion type differential equations. These equations and their related boundary conditions are of the same form as the few-group diffusion equations so that solution may be obtained by use of existing multidimensional computer codes. Finally, the new formalism is applied to a number of simplified, though realistic, problems and the results are compared with corresponding results provided either by rigorous treatment or by other approximate theories. In general, the accuracy of the formalism and the computational effort required are comparable with the simplified spherical harmonics method. In addition, the flexibility available in choosing the parameters of the synthetic kernel offers the possibility of tailoring kernels to specific design problems.