ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
Paul J. Turinsky, James J. Duderstadt
Nuclear Science and Engineering | Volume 45 | Number 2 | August 1971 | Pages 156-166
Technical Paper | doi.org/10.13182/NSE71-A20882
Articles are hosted by Taylor and Francis Online.
The substitution of a K-term degenerate kernel expansion (DKE) for the true scattering kernel in the inscattering term for neutron thermalization calculations has been shown to recast the solution of the original speed dependent Fredholm integral operator equation into that of a speed-independent K × K matrix operator equation, which is well suited for numerical calculations: A DKE has been constructed that rapidly converges pointwise to the true scattering kernel, preserves the total scattering cross section, and contains the correct speed structure to yield accurate solutions in neutron thermalization calculations. This DKE was employed in the numerical solution of the steady-state, time-moment, time-eigenvalue, and time-dependent neutron thermalization problems within the framework of asymptotic reactor theory. A detailed numerical investigation of the DKE approximation to the free proton gas and polyethylene scattering kernels indicated that accuracy consistent with a 32 discrete speed mesh point treatment was obtained by employing a 10-term DKE. This implies that the degenerate kernel technique reduces the size of the matrix operator equations to be solved to ∼ ⅓ the size required by a discrete ordinate approach, hence implying considerable computer cost reductions in neutron thermalization calculations.