ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
Yorio Gotoh, Hiroshi Takahashi
Nuclear Science and Engineering | Volume 45 | Number 2 | August 1971 | Pages 126-140
Technical Paper | doi.org/10.13182/NSE71-A20880
Articles are hosted by Taylor and Francis Online.
Since the model in which the water molecules form partially “ice-like” clusters explains the thermodynamic properties, the so-called itinerant oscillator model is applied to the motion of water molecules. The assumption is made that the atoms in a molecule receive stochastic forces from the neighboring molecules. The model of water with the stochastic force, of which the correlation functions are a delta function and a simple exponential, is discussed. The generalized frequency distributions of light and heavy water are derived from the model. The incoherent calculations of scattering laws of light and heavy water are compared with measurements. The model predicts well the total scattering cross section of light water, but the average cosine of scattering angle is slightly higher than that of the experiment. Further refinements in the model are discussed.