ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Jingshang Zhang, Yinlu Han, Ligang Cao
Nuclear Science and Engineering | Volume 133 | Number 2 | October 1999 | Pages 218-234
Technical Paper | doi.org/10.13182/NSE98-100
Articles are hosted by Taylor and Francis Online.
The double-differential cross sections of outgoing neutrons and alpha particles of the 12C(n,xn) and 12C(n,x) reactions are measured. A new nuclear reaction model for light nuclei is proposed to analyze the measured data. Because of a strong recoil effect in light nucleus reactions, the energy balance is strictly taken into account. Based on this new method, the LUNF code is developed to calculate all kinds of reaction cross sections and energy-angular distributions for the n + 12C reaction in the 4.8- to 20-MeV energy region. The reaction channel of (n,n'3) may proceed via a number of different reaction channels, as sequential particle emissions and two-body separation. The comparisons of the calculated results with the measured experimental data indicate that the model calculations are successful for outgoing neutrons. Also, kerma factors derived from the calculated results are compared with the measurements.