ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Felix C. Difilippo
Nuclear Science and Engineering | Volume 133 | Number 2 | October 1999 | Pages 163-177
Technical Paper | doi.org/10.13182/NSE99-2
Articles are hosted by Taylor and Francis Online.
This work originated because of the need to measure (in situ and nondestructively) the degree of purity of the graphite of the Swiss critical facility Proteus. The comparison between measured and calculated values of the decay constant of a pulse of neutrons was the chosen technique. The decay constant (in the absence of fissile materials) depends, mainly, on the purity of the graphite (via the absorption process) and leakage. The leakage factor depends on the thermalization process and the geometry of the system. Because it is very difficult to calculate in complex geometries like the Proteus cavity, Monte Carlo simulations of the behavior of a pulse of neutrons were made with the MCNP code. Despite all the sophistication of MCNP, the ultimate accuracy of the calculations is dependent upon the quality of the nuclear data that describe the thermalization process in the graphite. A recent review of these data shows that very little has changed in the last 30 yr in the ENDF/B evaluation of the double-differential scattering cross section. We decided then to benchmark the current state of the art to compute kinetics experiments in graphite (the MCNP code and the ENDF/B-VI cross-section set) against experimental data and other theoretical results for the analysis of the thermalization problem. Two classes of experiments were analyzed: (a) neutron wave propagation, where the observable is the complex relaxation length, and (b) pulsed neutron decay, where is measured as a function of the dimensions of the graphite. Once the bias of the calculational technique was known, it was used to calculate the neutron decay constant of the Proteus cavity as a function of the 10B equivalent impurity concentration. A comparison with pulsed neutron decay experiments made at Proteus allowed the determination of the degree of purity of the graphite. In this last part, we took full advantage of the sophistication of the MCNP code to model many details of the facility quite accurately including room return effects.