ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
E. E. Bende, A. H. Hogenbirk, J. L. Kloosterman, H. van Dam
Nuclear Science and Engineering | Volume 133 | Number 2 | October 1999 | Pages 147-162
Technical Paper | doi.org/10.13182/NSE99-A2078
Articles are hosted by Taylor and Francis Online.
An analytical expression was derived for the average Dancoff factor of a fuel kernel (Cfk) in a pebble of a high-temperature gas-cooled reactor. This Dancoff factor accounts for the probability that a neutron escaping from a fuel kernel enters another fuel kernel, in the same pebble or in other pebbles, without colliding with a moderator nucleus in between. If the fuel zone of the pebble is thought to be of infinite dimensions, the Dancoff factor becomes equal to the so-called infinite-medium Dancoff factor Cfk. The Cfk has been determined by the evaluation of three existing analytical expressions and by two Monte Carlo calculations performed with the MCNP-4A code, for various coated-particle densities. The Dancoff factor Cfk can be written as Cfk times a correction factor. The latter has been calculated for different fuel zone radii and pebble shell thicknesses. For the standard pebble, Cfk as a function of the number of coated particles has been calculated both analytically and with MCNP. The results of both methods are in good agreement. The analytical calculation method is preferred because it consumes practically no CPU time and obviates the building of MCNP models.