ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
E. E. Bende, A. H. Hogenbirk, J. L. Kloosterman, H. van Dam
Nuclear Science and Engineering | Volume 133 | Number 2 | October 1999 | Pages 147-162
Technical Paper | doi.org/10.13182/NSE99-A2078
Articles are hosted by Taylor and Francis Online.
An analytical expression was derived for the average Dancoff factor of a fuel kernel (Cfk) in a pebble of a high-temperature gas-cooled reactor. This Dancoff factor accounts for the probability that a neutron escaping from a fuel kernel enters another fuel kernel, in the same pebble or in other pebbles, without colliding with a moderator nucleus in between. If the fuel zone of the pebble is thought to be of infinite dimensions, the Dancoff factor becomes equal to the so-called infinite-medium Dancoff factor Cfk. The Cfk has been determined by the evaluation of three existing analytical expressions and by two Monte Carlo calculations performed with the MCNP-4A code, for various coated-particle densities. The Dancoff factor Cfk can be written as Cfk times a correction factor. The latter has been calculated for different fuel zone radii and pebble shell thicknesses. For the standard pebble, Cfk as a function of the number of coated particles has been calculated both analytically and with MCNP. The results of both methods are in good agreement. The analytical calculation method is preferred because it consumes practically no CPU time and obviates the building of MCNP models.