ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
G. M. Roach, Jr., S. I. Abdel-Khalik, S. M. Ghiaasiaan, M. F. Dowling, S. M. Jeter
Nuclear Science and Engineering | Volume 133 | Number 1 | September 1999 | Pages 106-117
Technical Note | doi.org/10.13182/NSE99-A2076
Articles are hosted by Taylor and Francis Online.
Onset of flow instability (OFI) in uniformly heated microchannels cooled with subcooled water at very low flow rates was experimentally investigated. Four different microchannels, all of which were 22 cm long with a 16-cm-long heated section, were used. Two were circular with 1.17- and 1.45-mm diameters. The other two represented flow channels in a microrod bundle with triangular array and had a hydraulic diameter of 1.13 mm; one was uniformly heated over its entire surface, and the other heated only over the surfaces of the surrounding rods. The test parameter ranges were as follows: 220 to 790 kg/m2s mass flux, 240- to 933-kPa channel exit pressure, 30 to 74°C inlet temperature, and 0.1 to 0.5 MW/m2 heat flux. In addition, the effect of dissolved noncondensables on OFI was examined by performing similar experiments with degassed water and water saturated with air with respect to the test section inlet temperature and exit pressure.Conditions leading to OFI were different from those reported for larger channels and for microchannels subject to higher coolant mass flow rates. In all the experiments, OFI occurred when equilibrium quality at channel exit was close to zero or positive, indicating the possibility of insignificant subcooled voidage in the channel and indicating that the widely used models and correlations that are based on the OFI phenomenology representing larger channels may not apply to microchannels at low-flow rates. The channel total pressure drops were significantly greater in tests with air-saturated water as compared with similar tests with degassed water. The impact of the dissolved noncondensable on the conditions leading to OFI was relatively small, however. With all parameters including heat flux unchanged, the presence of dissolved air changed the mass fluxes that led to OFI typically by only a few percent.