ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Tomomi Uchiyama
Nuclear Science and Engineering | Volume 133 | Number 1 | September 1999 | Pages 92-105
Technical Note | doi.org/10.13182/NSE99-A2075
Articles are hosted by Taylor and Francis Online.
Air-water two-phase flows around a rectangular cylinder located in vertical upward flows are analyzed by an incompressible two-fluid model using the two-dimensional upstream finite element method proposed earlier. The Reynolds number, based on the cross-stream width of the cylinder and the free-stream velocity of the liquid phase, is 2.0 x 104, and the volumetric fraction of the gas phase upstream of the cylinder g0 ranges from 0 to 0.075. Three kinds of cylinders with the thickness-to-width ratios D/B of 0.5, 1, and 1.5 are employed. The calculated flows exhibit unsteady behavior with the von Kármán vortices shedding from the cylinder into the wake at every g0 value. The volumetric fraction of the gas phase is higher in the wake and achieves maximum value at the center of the vortices, where the pressure reaches its minimum value. The flow field and the vortex-shedding frequency are greatly affected not only by the g0 value but also by the D/B ratio.