ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
W. W. Marr, M. M. El-Wakil
Nuclear Science and Engineering | Volume 41 | Number 2 | August 1970 | Pages 271-280
Technical Paper | doi.org/10.13182/NSE70-A20713
Articles are hosted by Taylor and Francis Online.
A serial (discrete-time continuous-space) method is employed to solve the unsteady-state energy equations in porous systems on a hybrid computer. The nonlinear, coupled partial-differential equations are solved by replacing the time derivatives with backward finite-difference approximations. To increase the order of accuracy in the time increment of the solution, the Crank-Nicholson scheme is used. The resulting difference-differential equations are solved in the direction opposite to that of the fluid flow to eliminate computational instability. The average temperatures over the consecutive time steps are solved on the analog portion of the hybrid computer. Solutions of the present time step are obtained by combining the analog solutions with those of the previous time step stored in the digital computer. The commonly encountered, mixed boundary conditions are satisfied by using a steepest descent iteration scheme based on least-squares-error minimization. A so-called binary-search technique provides reasonable initial trial values from which the iteration process converges. The trial values are improved by making use of the parameter influence coefficients that are obtained by taking finite differences through a number of test runs at the beginning of the solution and are taken to be constant during the entire solution time. In most cases, the iteration process converges in two to three iterations per boundary value searched. Comparisons of the hybrid computer solutions agree with those obtained by other numerical methods on a digital computer within 1%.