ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
W. W. Marr, M. M. El-Wakil
Nuclear Science and Engineering | Volume 41 | Number 2 | August 1970 | Pages 271-280
Technical Paper | doi.org/10.13182/NSE70-A20713
Articles are hosted by Taylor and Francis Online.
A serial (discrete-time continuous-space) method is employed to solve the unsteady-state energy equations in porous systems on a hybrid computer. The nonlinear, coupled partial-differential equations are solved by replacing the time derivatives with backward finite-difference approximations. To increase the order of accuracy in the time increment of the solution, the Crank-Nicholson scheme is used. The resulting difference-differential equations are solved in the direction opposite to that of the fluid flow to eliminate computational instability. The average temperatures over the consecutive time steps are solved on the analog portion of the hybrid computer. Solutions of the present time step are obtained by combining the analog solutions with those of the previous time step stored in the digital computer. The commonly encountered, mixed boundary conditions are satisfied by using a steepest descent iteration scheme based on least-squares-error minimization. A so-called binary-search technique provides reasonable initial trial values from which the iteration process converges. The trial values are improved by making use of the parameter influence coefficients that are obtained by taking finite differences through a number of test runs at the beginning of the solution and are taken to be constant during the entire solution time. In most cases, the iteration process converges in two to three iterations per boundary value searched. Comparisons of the hybrid computer solutions agree with those obtained by other numerical methods on a digital computer within 1%.