ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
J. G. Carver, W. R. Morgan, C. R. Porter, M. A. Robkin
Nuclear Science and Engineering | Volume 41 | Number 2 | August 1970 | Pages 209-225
Technical Paper | doi.org/10.13182/NSE70-A20708
Articles are hosted by Taylor and Francis Online.
Measurements have been made of relative nuclear-reaction rates within sub-critical water-moderated plutonia-urania fuel lattices, under conditions considered typical for plutonium recycle in central-station power reactors. Measurement conditions included water:fuel ratios of 3:1 and 2:1; temperatures of 70, 235, 330, 430, and 540°F; and three positions within the unit cell. Nuclear reaction rates measured included relative fission rates in 235U, 239Pu, and 241Pu, as well as relative capture rates in 176Lu (principal resonance at 0.143 eV), 168Yb (0.597 eV), 191Ir (0.654 eV), 193Ir (1.303 eV), 197Au (4.906 eV), 139La (73.5 eV), and 63Cu (1/v detector). To facilitate comparison with predicted values, the experimental resonance absorption-rate ratios were normalized to ratios measured within a pure water spectrum. Experimental reaction-rate ratios were compared with values predicted using the THERMØS code in conjunction with a modified version of EPITHERMØS; and agreement varying from fair to good was observed. The internal consistency of the measurements suggests their future utility for evaluating methods of calculating neutron spectra and relative reaction rates within lattices of the type considered.