ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
3D-printed tool at SRS makes quicker work of tank waste sampling
A 3D-printed tool has been developed at the Department of Energy’s Savannah River Site in South Carolina that can eliminate months from the job of radioactive tank waste sampling.
J. A. Halbleib, Sr., M. R. Scott
Nuclear Science and Engineering | Volume 37 | Number 2 | August 1969 | Pages 271-277
Technical Paper | doi.org/10.13182/NSE69-A20687
Articles are hosted by Taylor and Francis Online.
Extensive calculations have been carried out for neutron production from the 3H(d,n)4He, 3H(p,n)3He, and 2H(d,n)3He reactions using hydrated titanium targets. Both thin and totally stopping targets have been considered for ion energies up to 5 MeV. By using the appropriate ion energy, production angle, and reaction, and allowing an energy spread of 10%, it is found that one can obtain neutron current densities of the same order of magnitude with energies from 0 to 22 MeV except for the gap between 8 and 12 MeV. Above 1 MeV variation of all pertinent neutron production characteristics with target loading ratio are found to be essentially the same regardless of reaction type, ion energy, or production angle. Total neutron yields are also calculated along with an example neutron-energy spectrum.