ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DOE-EM awards $74.8M Oak Ridge support services contract
The Department of Energy’s Office of Environmental Management has awarded a five-year contract worth up to $74.8 million to Independent Strategic Management Solutions for professional support services at the Oak Ridge Office of Environmental Management site in Oak Ridge, Tenn.
Hiroshi Takahashi
Nuclear Science and Engineering | Volume 37 | Number 2 | August 1969 | Pages 198-215
Technical Paper | doi.org/10.13182/NSE69-A20679
Articles are hosted by Taylor and Francis Online.
The coherent neutron scattering from polycrystalline graphite is calculated using a sampling method with the Yoshimori-Kitano model and the Young-Koppel force constants. The calculations are compared with experimental results obtained by Carvalho, Eremeev et al., and Whittemore and it is shown that the agreement between the calculations and the experimental results is very good. For Carvalho's experiment, which corrects for multiple scattering, the agreement is good for the range of small momentum transfer (α) while for the experiments of Eremeev et al. the agreement is best for the range of intermediate α. A comparison of the dispersion relation, polarization vector and the dynamical structure factor for the Yoshimori-Kitano model and the Young-Koppel model indicates that the difference in the scattering laws is mainly due to the difference in the dispersion relations. A code called “ONE-PHONON” which uses a sampling method to calculate the scattering law is described. It is suggested that the measurement of the scattering law for each mode in pyrolitic graphite will give valuable information about the lattice dynamics of graphite.