ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
M. V. Speight
Nuclear Science and Engineering | Volume 37 | Number 2 | August 1969 | Pages 180-185
Technical Paper | doi.org/10.13182/NSE69-A20676
Articles are hosted by Taylor and Francis Online.
The influence of intragranular bubbles, acting as efficient trapping sites, on the migration of fission gas atoms in material under irradiation is assessed. It is considered that the bubbles are unstable due to the operation of an irradiation-induced resolution process tending to dissolve their enclosed gas. Treating an individual grain within the material as a sphere whose boundary behaves as a perfect sink, general expressions are derived for the intragranular concentrations of gas existing instantaneously within bubbles and in solution. It is shown that the relationships may be simplified for the range of irradiation times and conditions likely to be encountered in practice. Under these conditions, an expression is obtained for the quantity of gas released to the grain boundary, and this is compared with the analogous expression derived previously by Booth for the case where there are no intragranular traps. The fact that the resolution process through its effects on bubbles at the grain boundary will return some gas to the matrix and in so doing destroy the property of perfect-sink behavior is later considered. By an approximate method the appropriate modification to the formula describing the quantity of gas released to the boundary is deduced. This final expression, including the complete effects of intragranular trapping and irradiation-induced resolution on gas migration, may provide the basis on which to calculate the amount of gas which is eventually released external to the material from regions where intergranular bubbles grow so large that they interlink.