ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
M. V. Speight
Nuclear Science and Engineering | Volume 37 | Number 2 | August 1969 | Pages 180-185
Technical Paper | doi.org/10.13182/NSE69-A20676
Articles are hosted by Taylor and Francis Online.
The influence of intragranular bubbles, acting as efficient trapping sites, on the migration of fission gas atoms in material under irradiation is assessed. It is considered that the bubbles are unstable due to the operation of an irradiation-induced resolution process tending to dissolve their enclosed gas. Treating an individual grain within the material as a sphere whose boundary behaves as a perfect sink, general expressions are derived for the intragranular concentrations of gas existing instantaneously within bubbles and in solution. It is shown that the relationships may be simplified for the range of irradiation times and conditions likely to be encountered in practice. Under these conditions, an expression is obtained for the quantity of gas released to the grain boundary, and this is compared with the analogous expression derived previously by Booth for the case where there are no intragranular traps. The fact that the resolution process through its effects on bubbles at the grain boundary will return some gas to the matrix and in so doing destroy the property of perfect-sink behavior is later considered. By an approximate method the appropriate modification to the formula describing the quantity of gas released to the boundary is deduced. This final expression, including the complete effects of intragranular trapping and irradiation-induced resolution on gas migration, may provide the basis on which to calculate the amount of gas which is eventually released external to the material from regions where intergranular bubbles grow so large that they interlink.