ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DOE-EM awards $74.8M Oak Ridge support services contract
The Department of Energy’s Office of Environmental Management has awarded a five-year contract worth up to $74.8 million to Independent Strategic Management Solutions for professional support services at the Oak Ridge Office of Environmental Management site in Oak Ridge, Tenn.
D. R. Harris, V. Prescop
Nuclear Science and Engineering | Volume 37 | Number 2 | August 1969 | Pages 171-179
Technical Paper | doi.org/10.13182/NSE69-A20675
Articles are hosted by Taylor and Francis Online.
A reactor can be analyzed as a multiplicative stochastic process or, approximately, as a deterministic process. When feedback is present, the stochastic and deterministic analyses can differ qualitatively as well as quantitatively, as is illustrated by the concept of stability. In the present study, a stochastic model of a nuclear power reactor with 135Xe, 135I, and control feedback is considered as an example of a nonlinear stochastic process. The values of variances and covariances are calculated from the first- and second-moment equations, using an iterative procedure. Numerical criteria for the value of the feedback coefficient for marginal stationarity of the stochastic model are compared with the corresponding criteria for the stability of the corresponding linearized deterministic model and found to be identical, within eight significant figures.