ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DOE-EM awards $74.8M Oak Ridge support services contract
The Department of Energy’s Office of Environmental Management has awarded a five-year contract worth up to $74.8 million to Independent Strategic Management Solutions for professional support services at the Oak Ridge Office of Environmental Management site in Oak Ridge, Tenn.
L. G. Larsson, E. Möller
Nuclear Science and Engineering | Volume 33 | Number 2 | August 1968 | Pages 218-224
Technical Paper | doi.org/10.13182/NSE68-A20659
Articles are hosted by Taylor and Francis Online.
Measurements have been made of the decay constant of thermal neutrons in water poisoned with boron and with the non-1/v absorber cadmium. An experimental method has been used in which proper spatial integration of the neutron flux enables data that are representative of the infinite medium to be accumulated without waiting for the establishment of a fundamental mode distribution. The measurements yield effective absorption cross sections in good agreement with presently adopted values. The change in effective absorption cross section with concentration of the dissolved cadmium (dσeff)/ (dN) has been determined for an infinite medium at 20°C. Two- and three-parameter fits of the decay constant yield −(0.32 ± 0.09) · 10−17 b cm3 and −(0.47 ± 0.10) · 10−17 b cm3, respectively, for the coefficient (dσeff)/ (dN). Earlier published measurements have resulted in two to five times larger values, whereas a published calculated value for Nelkin's model is −0.33 · 10−17 b cm3.