ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
L. G. Larsson, E. Möller
Nuclear Science and Engineering | Volume 33 | Number 2 | August 1968 | Pages 218-224
Technical Paper | doi.org/10.13182/NSE68-A20659
Articles are hosted by Taylor and Francis Online.
Measurements have been made of the decay constant of thermal neutrons in water poisoned with boron and with the non-1/v absorber cadmium. An experimental method has been used in which proper spatial integration of the neutron flux enables data that are representative of the infinite medium to be accumulated without waiting for the establishment of a fundamental mode distribution. The measurements yield effective absorption cross sections in good agreement with presently adopted values. The change in effective absorption cross section with concentration of the dissolved cadmium (dσeff)/ (dN) has been determined for an infinite medium at 20°C. Two- and three-parameter fits of the decay constant yield −(0.32 ± 0.09) · 10−17 b cm3 and −(0.47 ± 0.10) · 10−17 b cm3, respectively, for the coefficient (dσeff)/ (dN). Earlier published measurements have resulted in two to five times larger values, whereas a published calculated value for Nelkin's model is −0.33 · 10−17 b cm3.