ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Amir N. Nahavandi, Richard F. Von Hollen
Nuclear Science and Engineering | Volume 22 | Number 4 | August 1965 | Pages 463-469
Technical Paper | doi.org/10.13182/NSE65-A20633
Articles are hosted by Taylor and Francis Online.
An analytical model for the prediction of steam-water critical-flow pressure, mass discharge and pressure gradients in the approach region to critical flow is presented. The continuity, momentum and energy equations are applied to successive differential elements along the conduit and are solved numerically on an IBM-7094 digital computer for the maximum discharge flow rate. The proposed model assumes thermal equilibrium conditions and employs the modified Armand correlation to relate the void fraction to steam quality. The frictional losses in the momentum equation are obtained by two methods: a separated flow model and Armand model. A comparison of the analytical predictions with available test results on small diameter pipes shows that: 1) the present model agrees with the published test data; and 2) both frictional loss models are equally valid, and the selection of a particular method depends on the degree of conservatism desired.