ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DTE Energy studying uprate at Fermi-2, considers Fermi-3’s prospects
DTE Energy, the owner of Fermi nuclear power plant in Michigan, is considering an extended uprate for Unit 2 that would increase its 1,100-MW generation capacity by 150 MW.
Amir N. Nahavandi, Richard F. Von Hollen
Nuclear Science and Engineering | Volume 22 | Number 4 | August 1965 | Pages 463-469
Technical Paper | doi.org/10.13182/NSE65-A20633
Articles are hosted by Taylor and Francis Online.
An analytical model for the prediction of steam-water critical-flow pressure, mass discharge and pressure gradients in the approach region to critical flow is presented. The continuity, momentum and energy equations are applied to successive differential elements along the conduit and are solved numerically on an IBM-7094 digital computer for the maximum discharge flow rate. The proposed model assumes thermal equilibrium conditions and employs the modified Armand correlation to relate the void fraction to steam quality. The frictional losses in the momentum equation are obtained by two methods: a separated flow model and Armand model. A comparison of the analytical predictions with available test results on small diameter pipes shows that: 1) the present model agrees with the published test data; and 2) both frictional loss models are equally valid, and the selection of a particular method depends on the degree of conservatism desired.