ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
M. F. Osborne, E. L. Long, Jr., J. G. Morgan
Nuclear Science and Engineering | Volume 22 | Number 4 | August 1965 | Pages 420-433
Technical Paper | doi.org/10.13182/NSE65-A20628
Articles are hosted by Taylor and Francis Online.
A series of experiments to test the Experimental Gas-Cooled Reactor (EGCR) fuel element concept was conducted in the Oak Ridge Research Reactor (ORR) and the Engineering Test Reactor (ETR). The elements tested were sintered UO2 fuel pellets contained in stainless steel tubing. Principal test variables were fuel pellet geometry, cladding temperature, and fuel burnup. After irradiation, the elements were examined for dimensional stability, integrity of the cladding, the fractional release of fission gas from the fuel, and any interactions between the fuel and the cladding. Some elements were subjected to unusual and extreme conditions of operation and others were not built to EGCR specifications. Such elements experienced three types of failure: 1) severe cladding fractures, 2) microscopic cladding defects, and 3) failures in associated components. Detailed examination of these experiments showed potential problems which may occur if EGCR fuel elements are operated outside design conditions.