ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
C. J. Mueller, J. K. Vaurio
Nuclear Science and Engineering | Volume 69 | Number 2 | February 1979 | Pages 264-278
Technical Paper | doi.org/10.13182/NSE79-A20616
Articles are hosted by Taylor and Francis Online.
This paper describes the basic equations and solution techniques of a collection of heat transfer and coolant voiding dynamics models that have been developed and successfully applied to simulate hypothetical accidents in liquid-metal-cooled fast breeder reactors (LMFBRs) to the point of permanent subcriticality or to the initiation of a prompt-critical excursion. These models emphasize analytic and integral solution techniques to minimize computational time and have been programmed into the SACO fast-running accident analysis computer code. The comparisons of SACO results to analogous SAS3D results used to qualify these models are illustrated and discussed. The fast-running nature of these models makes them an ideal sensitivity analysis tool for use in probabilistic evaluations of LMFBR accidents. Their use in this application is illustrated.