ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
C. J. Mueller, J. K. Vaurio
Nuclear Science and Engineering | Volume 69 | Number 2 | February 1979 | Pages 264-278
Technical Paper | doi.org/10.13182/NSE79-A20616
Articles are hosted by Taylor and Francis Online.
This paper describes the basic equations and solution techniques of a collection of heat transfer and coolant voiding dynamics models that have been developed and successfully applied to simulate hypothetical accidents in liquid-metal-cooled fast breeder reactors (LMFBRs) to the point of permanent subcriticality or to the initiation of a prompt-critical excursion. These models emphasize analytic and integral solution techniques to minimize computational time and have been programmed into the SACO fast-running accident analysis computer code. The comparisons of SACO results to analogous SAS3D results used to qualify these models are illustrated and discussed. The fast-running nature of these models makes them an ideal sensitivity analysis tool for use in probabilistic evaluations of LMFBR accidents. Their use in this application is illustrated.