ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
K. N. Schwinkendorf
Nuclear Science and Engineering | Volume 132 | Number 1 | May 1999 | Pages 118-126
Technical Paper | doi.org/10.13182/NSE99-A2053
Articles are hosted by Taylor and Francis Online.
Severe accident simulation has been performed in the past to predict the energy release arising from hypothetical core disruptive accidents (CDA) postulated to occur in liquid-metal reactors (LMRs). This field has developed to a mature state with the creation of computer codes such as SIMMER, but these codes are highly specific to LMR designs. More recent attention has focused on thermal-spectrum criticality accidents. This has resulted in the creation of a new simulator code, A Transient History for Energetic Nuclear Accidents_2D (ATHENA_2D), which solves the transient multigroup space-time kinetics equations, coupled to multichannel thermal hydraulics and computational fluid dynamics. This paper presents results from two-dimensional kinetics simulations performed for a water reflood recriticality accident in a damaged light water reactor, typical of a Three Mile Island end-state core geometry. The accident is initiated by assuming reflood water that is insufficiently borated and a reactivity-optimized debris bed. Reactivity insertion rates analyzed in this study generally are smaller than in LMR CDAs (tens of dollars per second versus up to hundreds of dollars per second), and the energetics are slightly lower. Parametric variation of input was performed, including reactivity insertion rate and initial temperature.