ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
J. Michael Doster, Jeremy M. Kauffman
Nuclear Science and Engineering | Volume 132 | Number 1 | May 1999 | Pages 90-104
Technical Paper | doi.org/10.13182/NSE99-A2051
Articles are hosted by Taylor and Francis Online.
Drift-flux models can be used to describe two-phase-flow systems when explicit representation of the relative phase motion is not required. In these models, relative phase velocity is described by flow-regime-dependent, semiempirical models. Numerical stability of the mixture drift-flux equations is examined for different semi-implicit time discretization schemes. Representative flow-regime-dependent drift-flux correlations are considered, and analytic stability limits are derived based on these correlations. The analytic stability limits are verified by numerical experiments run in the vicinity of the predicted stable boundaries. It is shown that the stability limits are strong functions of the time-level specification and functional form chosen for the relative phase velocity. It is also shown that the mixture Courant limit normally associated with these methods is insufficient for ensuring a stable numerical scheme.