ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Michael G. Lysenko, Hing-Ip Wong, G. Ivan Maldonado
Nuclear Science and Engineering | Volume 132 | Number 1 | May 1999 | Pages 78-89
Technical Paper | doi.org/10.13182/NSE99-A2050
Articles are hosted by Taylor and Francis Online.
Although artificial neural networks (ANNs) are powerful tools in terms of their high posttraining computational speed and their flexibility to construct complex nonlinear mappings from relatively few known data samples, a survey of past applications of ANNs to the area of core parameter prediction reveals drawbacks such as low prediction accuracy, lack of robust generalization, large network dimensionality, and typically high training requirements. This study provides a brief survey of past and recent applications of ANNs to direct core parameter predictions as well as an alternate hybrid approach that avoids the aforementioned shortcomings of ANNs by combining the mathematical rigor of generalized perturbation theory along with the strong qualities of ANNs in error prediction situations. The results presented focus exclusively on the neutron diffusion's fundamental mode eigenvalue (i.e., 1/keff) and demonstrate the viability of computationally inexpensive adaptive ANN error controllers for perturbation theory applications.