ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Ser Gi Hong, Nam Zin Cho
Nuclear Science and Engineering | Volume 132 | Number 1 | May 1999 | Pages 65-77
Technical Paper | doi.org/10.13182/NSE99-A2049
Articles are hosted by Taylor and Francis Online.
A new transport theory method of characteristic direction probabilities (CDP), which can treat complicated geometries with computational efficiency, is presented. In the method, the entire problem is divided into subsystems or cells that are further subdivided into finer mesh regions (i.e., computational meshes). Within a subsystem or cell, the fine meshes are coupled by the directional transmission and collision probabilities for each characteristic direction. In other words, all fine meshes in a subsystem are not coupled together but only the fine meshes along the characteristic line are coupled for each direction. This is in contrast to the traditional collision probability methods (CPMs). To calculate the directional probabilities, ray tracing with the macroband concept is performed only on each subsystem type. To couple the subsystems, the angular flux (not the current as in the interface current method) on the interface between the adjacent subsystems is used. Therefore, the method combines the most desirable features of the discrete ordinates methods and those of the integral transport methods. To verify CDP, it is applied to two benchmark problems that consist of complex meshes and is compared with other methods (CPM, method of characteristics, and Monte Carlo method). The results show that CDP gives accurate results with short computing time.