ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
T. Kurosawa, N. Nakao, T. Nakamura, Y. Uwamino, T. Shibata, N. Nakanishi, A. Fukumura, K. Murakami
Nuclear Science and Engineering | Volume 132 | Number 1 | May 1999 | Pages 30-57
Technical Paper | doi.org/10.13182/NSE98-53
Articles are hosted by Taylor and Francis Online.
The angular and energy distributions of neutrons produced by 100 and 180 MeV/nucleon He and 100, 180, and 400 MeV/nucleon C ions stopping in thick C, Al, Cu, and Pb targets were measured using the Heavy-Ion Medical Accelerator in Chiba of the National Institute of Radiological Science (NIRS), Japan. The neutron spectra in the forward direction have broad peaks of ~60 to 70% of the incident particle energy per nucleon due to the break-up process, and they spread up to almost twice the projectile energy per nucleon. The neutron spectra are similar for the same incident energy of 100 MeV/nucleon for both He and C ions. The phenomenological hybrid analysis, based on the moving source model and the Gaussian fitting of the break-up process, could well represent the measured thick target neutron spectra. The experimental results are also compared with the calculations using the heavy-ion code, and the calculated results agree with the measured results within a factor of 2 margin of accuracy. This systematic study on neutron production from thick targets by high-energy heavy ions is the first experimental work performed by NIRS and will be useful for designing the shielding for the high-energy heavy-ion accelerator facility.