ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
T. D. Radcliff, J. R. Parsons, W. S. Johnson, A. E. Ruggles
Nuclear Science and Engineering | Volume 131 | Number 3 | March 1999 | Pages 426-438
Technical Paper | doi.org/10.13182/NSE99-A2044
Articles are hosted by Taylor and Francis Online.
An existing geometric and fluid-fluid scaled facility is applied to investigate the transport of borated safety injection (SI) fluid in the Westinghouse AP600 reactor vessel during a main steam-line rupture (MSLR) event. The AP600 reactor has coaxial injection into the vessel downcomer rather than the cold-leg cross-flow injection typical of operating power reactors. This gas-flow test facility has unique detail in the representation of the SI nozzle-to-core inlet path most important to SI transport. Analysis of the transport phenomena expected in the reactor and the scaled facility, given MSLR conditions, indicates that both buoyancy and turbulent diffusion can have comparable influences on SI transport. It is shown that different reactor-to-experiment velocity ratios are required to scale each phenomenon. Tests are performed to evaluate transient SI fluid concentration at the core inlet using the appropriate velocity ratios to scale buoyancy and diffusion. Two asymmetric loop-flow boundary conditions representative of the MSLR event as well as a symmetric flow condition are applied. While no one test result is fully similar to the expected reactor transport, this ensemble of tests provides data that are valuable for AP600 numerical model benchmarking.