ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC’s David Wright visits the Hill and more NRC news
Wright
The Nuclear Regulatory Commission is in the spotlight today for three very different reasons. First, NRC Chair David Wright was on Capitol Hill yesterday for his renomination hearing in front of the Senate’s Environment and Public Works Committee. Second, the NRC released its updated milestone schedules according to the Nuclear Energy Innovation and Modernization Act (NEIMA) and the executive orders signed by President Trump last month; and third, as reported by Reuters on Tuesday, 28 former NRC officials have condemned the dismissal of Commissioner Hanson earlier this month.
Renomination: EPW Committee chair Sen. Shelley Moore Capito (R., W.Va.) opened the hearing with a statement praising Wright’s experience and emphasized the urgency of stable leadership at the NRC.
“China is executing a rapid build-out of its nuclear industry,” Capito said. “The demand for clean, baseload power is skyrocketing as we position America to win the AI race.”
G. M. Roach, Jr., S. I. Abdel-Khalik, S. M. Ghiaasiaan, M. F. Dowling, S. M. Jeter
Nuclear Science and Engineering | Volume 131 | Number 3 | March 1999 | Pages 411-425
Technical Paper | doi.org/10.13182/NSE99-A2043
Articles are hosted by Taylor and Francis Online.
Critical heat flux (CHF) associated with the flow of subcooled water in heated microchannels is experimentally investigated. Four different channels, all 16 cm in length, are used: two are circular and uniformly heated and have 1.17- and 1.45-mm diameters, and the other two represent flow channels in a microrod bundle with a triangular array and 1.131-mm hydraulic diameter, with one uniformly heated over its entire surface and the other heated only over the surfaces of the surrounding rods. The test section parameter ranges are as follows: 250 to 1000 kg/m2s mass flux, 344- to 1043-kPa exit pressure, 407- to 1204-kPa inlet pressure, and 49 to 72.5°C inlet temperature. The effect of noncondensables (air) on CHF is also examined by repeating some of the experiments with degassed water and with water saturated with air at test section inlet pressure and temperature.Critical heat flux occurs at very high flow qualities (0.36 and higher) in all the tests and indicates the occurrence of dryout. Furthermore, the CHF appears to monotonically increase with increasing mass flux or pressure. The CHF depends on channel cross-section geometry, and unlike high mass flux data, it increases with increasing channel diameter. The dissolved air slightly increases the CHF for the smaller circular channel and reduces the CHF for the other test sections. The experimental data are compared with the predictions of three widely used empirical correlations. The Bowring-1972 correlation could predict the data with reasonable accuracy.