ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
J. T. Mihalczo, W. T. King, E. D. Blakeman
Nuclear Science and Engineering | Volume 95 | Number 1 | January 1987 | Pages 1-13
Technical Paper | doi.org/10.13182/NSE87-A20428
Articles are hosted by Taylor and Francis Online.
Experiments performed with two coupled uranium (93.16 wt% 235U) metal cylinders (17.77-cm o.d., 5.08 cm thick) are the first application to coupled systems of the 252Cf-source-driven neutron noise analysis method for obtaining the subcritical neutron multiplication factor. These coaxial cylinders were separated axially by various thicknesses of either air or borated plaster between the flat surfaces. In all measurements, the 252Cf neutron source was located at the center of the outer flat surface of one cylinder, and the two detectors were located in three configurations: (a) both adjacent to the radial surface of the cylinder with the source, (b) both detectors adjacent to the radial surface of the cylinder without the source, and (c) one detector adjacent to the radial surface of each cylinder. A ratio of spectral densities obtained with the source and detectors adjacent to the cylinder with the source can be interpreted using point kinetics to obtain the subcritical neutron multiplication factor. However, when the source and detectors are placed on different cylinders, a coupled kinetics model is required to interpret the ratio of spectral densities. The cross-power spectral densities between detector and source positioned on different cylinders depend on the neutronic coupling and approach zero as the coupling does. By comparing the subcriticality from the measurements performed with borated plaster separating the uranium cylinders to those separated by air, it was found that the neutron multiplication factor was always increased by the insertion of borated plaster between the cylinders, regardless of their separation.