ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
P. J. Maudlin, R. C. Borg, K. O. Ott
Nuclear Science and Engineering | Volume 71 | Number 2 | August 1979 | Pages 202-205
Technical Note | doi.org/10.13182/NSE79-A20411
Articles are hosted by Taylor and Francis Online.
For a hierarchy of four logically different definitions for calculating the asymptotic growth of fast breeder reactor fuel, an investigation is performed concerning the comparative accuracy and computational effort associated with each definition. The definition based on detailed calculation of the accumulating fuel in an expanding park of reactors asymptotically yields the most accurate value of the infinite time growth rate, γ∞, which is used as a reference value. The computational effort involved with the park definition is very large. The definition based on the single reactor calculation of the equilibrium surplus production rate and fuel inventory gives a value for γ∞ of comparable accuracy to the park definition and uses significantly less central processor unit (CPU) time. The third definition is based on a continuous treatment of the reactor fuel cycle for a single reactor and gives a value for γ∞ that accurately approximates the second definition. The continuous definition requires very little CPU time. The fourth definition employs the isotopic breeding worths, wi*, for a projection of the asymptotic growth rate. The CPU time involved in this definition is practically nil if its calculation is based on the few-cycle depletion calculation normally performed for core design and critical enrichment evaluations. The small inaccuracy (≃1%) of the breeding-worth-based definition is well within the inaccuracy range that results unavoidably from other sources such as nuclear cross sections, group constants, and flux calculations. This fully justifies the use of this approach in routine calculations.