ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Jaques Reifman, Thomas Y. C. Wei
Nuclear Science and Engineering | Volume 131 | Number 3 | March 1999 | Pages 329-347
Technical Paper | doi.org/10.13182/NSE99-A2038
Articles are hosted by Taylor and Francis Online.
A novel first-principles-based diagnostic system called PRODIAG is proposed for on-line detection and identification of faulty components during incipient off-normal process conditions. The concepts of qualitative physics reasoning and function-oriented diagnostics are employed in the design of PRODIAG and result in two unique capabilities not found in other plant-level diagnostic systems. First, PRODIAG is fully portable as it requires only modification of the input files containing the appropriate process schematics information to be able to diagnose single-component failures in different processes/plants. Second, PRODIAG detects unanticipated faults. Hence, it does not require the prespecification and formulation of rules to cover every conceivable fault scenario, and unlike traditional approaches, it is not likely to misdiagnose unforeseen events. PRODIAG's approach is to map process symptoms into component faults through a three-step mapping procedure with a knowledge base containing three distinct types of information: qualitative macroscopic balance equation rules, functional classification of process components, and the process piping and instrumentation diagram. The concepts introduced in the proposed diagnostic system are described, and an illustrative example shows how they are used in plant-level diagnostics.