ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jaques Reifman, Thomas Y. C. Wei
Nuclear Science and Engineering | Volume 131 | Number 3 | March 1999 | Pages 329-347
Technical Paper | doi.org/10.13182/NSE99-A2038
Articles are hosted by Taylor and Francis Online.
A novel first-principles-based diagnostic system called PRODIAG is proposed for on-line detection and identification of faulty components during incipient off-normal process conditions. The concepts of qualitative physics reasoning and function-oriented diagnostics are employed in the design of PRODIAG and result in two unique capabilities not found in other plant-level diagnostic systems. First, PRODIAG is fully portable as it requires only modification of the input files containing the appropriate process schematics information to be able to diagnose single-component failures in different processes/plants. Second, PRODIAG detects unanticipated faults. Hence, it does not require the prespecification and formulation of rules to cover every conceivable fault scenario, and unlike traditional approaches, it is not likely to misdiagnose unforeseen events. PRODIAG's approach is to map process symptoms into component faults through a three-step mapping procedure with a knowledge base containing three distinct types of information: qualitative macroscopic balance equation rules, functional classification of process components, and the process piping and instrumentation diagram. The concepts introduced in the proposed diagnostic system are described, and an illustrative example shows how they are used in plant-level diagnostics.