ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. B. Chadwick, P. G. Young, S. Chiba, S. C. Frankle, G. M. Hale, H. G. Hughes, A. J. Koning, R. C. Little, R. E. MacFarlane, R. E. Prael, L. S. Waters
Nuclear Science and Engineering | Volume 131 | Number 3 | March 1999 | Pages 293-328
Technical Paper | doi.org/10.13182/NSE98-48
Articles are hosted by Taylor and Francis Online.
New accelerator-driven technologies that utilize spallation neutrons, such as the production of tritium and the transmutation of radioactive waste, require accurate nuclear data to model the performance of the target/blanket assembly and to predict neutron production, activation, heating, shielding requirements, and material damage. To meet these needs, nuclear-data evaluations and libraries up to 150 MeV have been developed for use in transport calculations to guide engineering design. By using advanced nuclear models that account for details of nuclear structure and the quantum nature of the nuclear scattering, significant gains in accuracy can be achieved below 150 MeV, where intranuclear cascade calculations become less accurate. Evaluations are in ENDF-6 format for important target/blanket and shielding materials (isotopes of H, C, N, O, Al, Si, P, Ca, Cr, Fe, Ni, Cu, Nb, W, Hg, and Pb) for both incident neutrons and incident protons. The evaluations are based on measured data as well as predictions from the GNASH nuclear model code, which calculates cross sections using Hauser-Feshbach, exciton, and Feshbach-Kerman-Koonin preequilibrium models. Elastic scattering distributions and direct reactions are calculated from the optical model. All evaluations specify production cross sections and energy-angle correlated spectra of secondary light particles as well as production cross sections and energy distributions of heavy recoils and gamma rays. A formalism developed to calculate recoil energy distributions is presented. The use of these nuclear data in the MCNPX radiation transport code is also briefly described. This code merges essential elements of the LAHET and MCNP codes and uses these new data below 150 MeV and intranuclear cascade collision physics at higher energies. Extensive comparisons are shown between the evaluated results and experimental cross-section data to benchmark and validate the evaluated library. In addition, integral benchmarks of calculated and measured kerma coefficients for neutron energy deposition and neutron transmission through an iron slab compared with MCNPX calculations are provided. These evaluations have been accepted into the ENDF/B-VI library as Release 6.