ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Robert E. Henry, Hans K. Fauske, Stuart T. McComas
Nuclear Science and Engineering | Volume 41 | Number 1 | July 1970 | Pages 79-91
Technical Paper | doi.org/10.13182/NSE70-A20366
Articles are hosted by Taylor and Francis Online.
Steam-water, two-phase critical flows were obtained in long pipes (L/D > 40) for mass flow rates ranging from 512 to 6460 lbm/(sec ft2), exit pressures from 40 to 150 psia, and thermodynamic equilibrium qualities from 0.0019 to 0.216. A comparison of the three test sections employed indicates that previous experimental data are in error for qualities less than 0.10 due to the influence of the downstream two-dimensional expansion on wall pressure taps located near the exit plane. Although simultaneous temperature and pressure measurements were not taken, the data exhibit trends that suggest the existence of a nonequlibrium phase change. Experimentally determined exit and axial void fractions indicate (a) that the velocity ratios are considerably less than the existing analytical predictions and (b) that previously dissolved gases existing from the liquid provide a source for vapor formation under adiabatic subcooled conditions.