ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Mark S. Jarzemba, James Weldy, English Pearcy
Nuclear Science and Engineering | Volume 131 | Number 2 | February 1999 | Pages 275-281
Technical Paper | doi.org/10.13182/NSE131-275
Articles are hosted by Taylor and Francis Online.
Two subcritical assemblies (consisting of a subcritical reactor plus a neutron emitter such as 252Cf) designed for conducting neutron activation analyses in the field are described. The size of the assemblies has been minimized (compared to conventional, graphite-moderated assemblies) to allow for field portability. Although less powerful than using a research reactor as the source of neutrons, these assemblies will provide an adequate source of neutrons for detecting gold concentrations in rock or soil samples down to the limits of economic importance. Using a field-portable source of neutrons eliminates the need for shipping samples back to the reactor for analysis, which may be important for reasons of sample security and measurement turnaround time. The two subcritical assemblies are composed of natural uranium metal as the multiplying material and high-density polyethylene as the moderator, and they have keff approximately equal to 0.8 for the smaller assembly (~692-kg assembly mass) and 0.9 for the larger assembly (~3059-kg assembly mass). The larger assembly was found to be more desirable from a neutronics standpoint; however, it may be too massive to maintain field portability. It was found that the optimal location for the irradiation facility (a 4.0-cm-high, 2.0-cm-diam right cylinder) in the subcritical assemblies is the grid location as close to the neutron emitter location as possible. It was also found that the total, epithermal plus thermal (i.e., neutron energy <0.5 eV), and thermal (i.e., neutron energy <0.05 eV) volume-averaged neutron fluxes were as follows (assuming a neutron emitter source strength of 109 n/s): 1.72 × 108, 4.47 × 107, and 2.15 × 107 cm-2s-1 for the smaller assembly, and 3.43 × 108, 9.09 × 107, and 4.37 × 107 cm-2s-1 for the larger assembly. Although the purpose for which the assembly was designed was for conducting neutron activation analyses for gold, the assemblies should also work equally well for analyzing sample compositions of other elements at both the bulk and trace levels.