ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Countering the nuclear workforce shortage narrative
James Chamberlain, director of the Nuclear, Utilities, and Energy Sector at Rullion, has declared that the nuclear industry will not have workforce challenges going forward. “It’s time to challenge the scarcity narrative,” he wrote in a recent online article. “Nuclear isn't short of talent; it’s short of imagination in how it attracts, trains, and supports the workforce of the future.”
Shiang-Huei Jiang
Nuclear Science and Engineering | Volume 75 | Number 1 | July 1980 | Pages 16-29
Technical Paper | doi.org/10.13182/NSE80-1
Articles are hosted by Taylor and Francis Online.
A one-dimensional gamma-ray transport code BIGGI 4T has been used to calculate gamma-ray attenuation in single layer and multiple layers of lead and water slabs from a plane monodirectional source. It has been found that boundary effect of finite medium is appreciable only in water within two mean-free-paths (mfp) of the boundary. Transmission buildup factors for multilayer slabs are not sensitive to the sequence of the alternate layers for the 3-MeV source. The conventional rule of thumb, that when the outermost layer exceeds 2 or 3 mfp, the buildup factor of the outermost material generally recommended, has been shown to be a bad approximation when based on the total number of mean-free-paths along the line of sight through all materials. Energy absorption buildup factor at the interface between layers was investigated in more detail. Transmission buildup factors obtained in the present study have been compared with those calculated by other empirical formulas. The applied range of various empirical formulas has been discussed. It has been found that semiempirical formulas devised by Kalos give data agreeing, in general and on the average, with the present results to within 5%.