ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
Kenny C. Gross, Chris Passerello
Nuclear Science and Engineering | Volume 75 | Number 1 | July 1980 | Pages 1-11
Technical Paper | doi.org/10.13182/NSE80-A20313
Articles are hosted by Taylor and Francis Online.
A problem with the gas-tagging scheme for identification of failed fuel assemblies in fast and light water reactors (LWRs) may arise when elements in two or more assemblies fail simultaneously. One method recently developed for resolving multiple failures can identify a second, third, or fourth leaker, provided the compositions of the tags coming from the previous leakers have already been determined. For a commercial-sized fast reactor or an LWR, it may not be possible to determine the composition of each tag individually as the failures occur This paper describes the development of an analytical technique that is capable of resolving simultaneous fuel failures and can be applied even when none of the compositions of the previously leaked tags is known.