ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
R. T. Santoro, R. G. Alsmiller, Jr., J. M. Barnes, G. T. Chapman
Nuclear Science and Engineering | Volume 78 | Number 3 | July 1981 | Pages 259-272
Technical Paper | doi.org/10.13182/NSE81-A20303
Articles are hosted by Taylor and Francis Online.
Integral experiments that measure the transport of ∼14-MeV deuterium-tritium (D-T) neutrons through laminated slabs of proposed fusion reactor shield materials have been carried out at the Oak Ridge National Laboratory. Measured and calculated neutron and gamma-ray energy spectra are compared as a function of the thickness and composition of Type 304 stainless steel, borated polyethylene (BP), and Hevimet (a tungsten alloy), and as a function of detector position behind these materials. The measured data were obtained by means of an NE-213 liquid scintillator using pulse-shape discrimination methods to resolve neutron and gamma-ray pulse-height data and spectral unfolding methods to convert these data to energy spectra. The calculated data were obtained using two-dimensional discrete-ordinates radiation transport methods in a complex calculational network that takes into account the energy-angle dependence of the D-T neutrons and the nonphysical anomalies of the Sn method. The transport calculations incorporate ENDF/B-IV cross-section data from the VITAMIN C data library. The measured and calculated neutron energy spectra are in good agreement behind slab configurations of Type 304 stainless steel and BP (∼10% for all neutron energies >850 keV). When 5 cm of Hevimet are added to a 45-cm-thick Type 304 stainless steel plus BP slab assembly, the agreement is less favorable. The agreement among the measured and calculated gamma-ray spectra for energies >750 keV ranges from ∼25% to a factor of ∼5 depending on the slab composition.