ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
General Matter to build Kentucky enrichment plant under DOE lease
The Department of Energy’s Office of Environmental Management announced it has signed a lease with General Matter for the reuse of a 100-acre parcel of federal land at the former Paducah Gaseous Diffusion Plant in Kentucky for a new private-sector domestic uranium enrichment facility.
E. A. Fischer
Nuclear Science and Engineering | Volume 78 | Number 3 | July 1981 | Pages 227-238
Technical Paper | doi.org/10.13182/NSE81-A20300
Articles are hosted by Taylor and Francis Online.
An approximate method to calculate the parallel neutron leakage in fast reactor slab lattices is described. It is derived from the integral transport equation and assumes isotropic scattering. By using an expansion in terms of oscillating functions, rather than the usual power series expansion in the buckling, it is proven that the method is also valid for voided cells. Results for a two-region cell are presented; they confirm that the widely used Benoist equation is valid for cases when sodium is present. However, for voided or nearly voided cells, the Benoist equation fails, whereas the new method is valid for any cell composition. The same method is applied to find the effective diffusion coefficient for a low-density channel. In the limit of zero buckling, the method reduces to well-known results available in literature by Rowlands. However, the buckling correction, obtained by a consistent expansion of the integral transport equation, is different from similar corrections in the literature.