ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Countering the nuclear workforce shortage narrative
James Chamberlain, director of the Nuclear, Utilities, and Energy Sector at Rullion, has declared that the nuclear industry will not have workforce challenges going forward. “It’s time to challenge the scarcity narrative,” he wrote in a recent online article. “Nuclear isn't short of talent; it’s short of imagination in how it attracts, trains, and supports the workforce of the future.”
D. Rozon, A. Hébert, D. McNabb
Nuclear Science and Engineering | Volume 78 | Number 3 | July 1981 | Pages 211-226
Technical Paper | doi.org/10.13182/NSE81-A20299
Articles are hosted by Taylor and Francis Online.
The total reactor feed rate under equilibrium refueling is minimized by adjusting the exit irradiation of the fuel in specified burnup zones while obeying constraints on excess reactivity and on the power shape in the reactor. The gradients used in the numerical search are obtained via the explicit generalized perturbation theory. A computer code, called OPTEX, was written to solve this optimization problem, using a successive linearization method that requires a small number of flux calculations to converge. Tests on a CANDU-type lattice have shown that this approach can be used to simultaneously obtain an optimal control poison distribution.