ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
T. A. Parish, W. S. Charlton, N. Shinohara, M. Andoh, M. C. Brady, S. Raman
Nuclear Science and Engineering | Volume 131 | Number 2 | February 1999 | Pages 208-221
Technical Paper | doi.org/10.13182/NSE99-A2029
Articles are hosted by Taylor and Francis Online.
Work performed in part for an American Nuclear Society Standards Committee Subgroup (ANS 19.9) to assess the status of delayed neutron data is summarized. Recent measurements of delayed neutron emission conducted at Texas A&M University are also described. During the last 10 yr, there have been advances in nuclear data libraries (e.g., improved fission product yields) that make it possible to quantitatively predict delayed neutron emission from basic data. The six-group delayed neutron data available in the literature from both macroscopic level experiments and microscopic level calculations for several actinide isotopes are compared. Results are also presented from recent experimental measurements of delayed neutron emission and delineates some of the relationships between these measurements and microscopic level predictions. For example, from the experimental measurements, Keepin's delayed neutron group 1 is shown to correspond mainly to a single isotope, 87Br, as expected from microscopic level theory, and Keepin's group 2 is shown to correspond to primarily two separate isotopes, 137I and 88Br. In the future, it may be useful to use properties of specific isotopes to replace Keepin's delayed neutron groups 1, 2, 3, and 4 for prescribing delayed neutron data for actinides.