ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
D. G. Cacuci, Y. Ronen, Z. Shayer, J. J. Wagschal, Y. Yeivin
Nuclear Science and Engineering | Volume 81 | Number 3 | July 1982 | Pages 432-442
Technical Paper | doi.org/10.13182/NSE82-A20284
Articles are hosted by Taylor and Francis Online.
An analysis of spectral effects that arise from solving the k-, α-, γ-, and δ-eigenvalue formulations of the neutron transport equation is presented. Hierarchies of neutron spectra softness are established and expressed in terms of spatial-dependent local indices that are defined for both the core and the reflector of nuclear system configurations. Conclusions regarding the general behavior of the spectrum-dependent integral spectral indices and initial conversion ratios given by the k-, α-, γ-, and δ-eigenvalue equations are also presented. Spectral effects in the core and in the reflector are distinguished by defining separate integral spectral indices for the core and for the reflector. It is shown that the relationship between the spectra given by the k-, α-, γ-, and δ-eigenvalue equations and the spectrum in a corresponding critical configuration depends on the specific physical process that causes deviation from criticality. Nevertheless, some general recommendations are offered regarding the use of a particular eigenvalue equation for specific applications. All conclusions are supported by numerical experiments performed for an idealized thermal system.