ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
John F. Carew, Gabriel Zamonsky
Nuclear Science and Engineering | Volume 131 | Number 2 | February 1999 | Pages 199-207
Technical Paper | doi.org/10.13182/NSE97-83
Articles are hosted by Taylor and Francis Online.
Mechanical quadratures that allow systematic improvement and solution convergence are derived for application of the discrete ordinates method to the Boltzmann transport equation. The quadrature directions are arranged on n latitudinal levels, are uniformly distributed over the unit sphere, and have positive weights. Both a uniform and equal-weight quadrature set UEn and a uniform and Gauss-weight quadrature set UGn are derived. These quadratures have the advantage over the standard level-symmetric LQn quadrature sets in that the weights are positive for all orders, and the solution may be systematically converged by increasing the order of the quadrature set. As the order of the quadrature is increased the points approach a uniform continuous distribution on the unit sphere and the quadrature is invariant with respect to spatial rotations. The numerical integrals converge for continuous functions as the order of the quadrature is increased.Numerical calculations were performed to evaluate the application of the UEn quadrature set. Comparisons of the exact moments and those calculated using the UEn quadrature set demonstrate that the moment integrals are performed accurately except for distributions that are very sharply peaked along the direction of the polar axis. A series of DORT transport calculations of the >1-MeV neutron flux for a typical reactor core/pressure vessel geometry were also carried out. These calculations employed the UEn (n = 6, 10, 12, 18, and 24) quadratures and indicate that the UEn solutions have converged to within ~0.5%. The UE24 solutions were also found to be more accurate than the calculations performed with the S16 level-symmetric quadratures.