ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
John F. Carew, Gabriel Zamonsky
Nuclear Science and Engineering | Volume 131 | Number 2 | February 1999 | Pages 199-207
Technical Paper | doi.org/10.13182/NSE97-83
Articles are hosted by Taylor and Francis Online.
Mechanical quadratures that allow systematic improvement and solution convergence are derived for application of the discrete ordinates method to the Boltzmann transport equation. The quadrature directions are arranged on n latitudinal levels, are uniformly distributed over the unit sphere, and have positive weights. Both a uniform and equal-weight quadrature set UEn and a uniform and Gauss-weight quadrature set UGn are derived. These quadratures have the advantage over the standard level-symmetric LQn quadrature sets in that the weights are positive for all orders, and the solution may be systematically converged by increasing the order of the quadrature set. As the order of the quadrature is increased the points approach a uniform continuous distribution on the unit sphere and the quadrature is invariant with respect to spatial rotations. The numerical integrals converge for continuous functions as the order of the quadrature is increased.Numerical calculations were performed to evaluate the application of the UEn quadrature set. Comparisons of the exact moments and those calculated using the UEn quadrature set demonstrate that the moment integrals are performed accurately except for distributions that are very sharply peaked along the direction of the polar axis. A series of DORT transport calculations of the >1-MeV neutron flux for a typical reactor core/pressure vessel geometry were also carried out. These calculations employed the UEn (n = 6, 10, 12, 18, and 24) quadratures and indicate that the UEn solutions have converged to within ~0.5%. The UE24 solutions were also found to be more accurate than the calculations performed with the S16 level-symmetric quadratures.