ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC’s David Wright visits the Hill and more NRC news
Wright
The Nuclear Regulatory Commission is in the spotlight today for three very different reasons. First, NRC Chair David Wright was on Capitol Hill yesterday for his renomination hearing in front of the Senate’s Environment and Public Works Committee. Second, the NRC released its updated milestone schedules according to the Nuclear Energy Innovation and Modernization Act (NEIMA) and the executive orders signed by President Trump last month; and third, as reported by Reuters on Tuesday, 28 former NRC officials have condemned the dismissal of Commissioner Hanson earlier this month.
Renomination: EPW Committee chair Sen. Shelley Moore Capito (R., W.Va.) opened the hearing with a statement praising Wright’s experience and emphasized the urgency of stable leadership at the NRC.
“China is executing a rapid build-out of its nuclear industry,” Capito said. “The demand for clean, baseload power is skyrocketing as we position America to win the AI race.”
John F. Carew, Gabriel Zamonsky
Nuclear Science and Engineering | Volume 131 | Number 2 | February 1999 | Pages 199-207
Technical Paper | doi.org/10.13182/NSE97-83
Articles are hosted by Taylor and Francis Online.
Mechanical quadratures that allow systematic improvement and solution convergence are derived for application of the discrete ordinates method to the Boltzmann transport equation. The quadrature directions are arranged on n latitudinal levels, are uniformly distributed over the unit sphere, and have positive weights. Both a uniform and equal-weight quadrature set UEn and a uniform and Gauss-weight quadrature set UGn are derived. These quadratures have the advantage over the standard level-symmetric LQn quadrature sets in that the weights are positive for all orders, and the solution may be systematically converged by increasing the order of the quadrature set. As the order of the quadrature is increased the points approach a uniform continuous distribution on the unit sphere and the quadrature is invariant with respect to spatial rotations. The numerical integrals converge for continuous functions as the order of the quadrature is increased.Numerical calculations were performed to evaluate the application of the UEn quadrature set. Comparisons of the exact moments and those calculated using the UEn quadrature set demonstrate that the moment integrals are performed accurately except for distributions that are very sharply peaked along the direction of the polar axis. A series of DORT transport calculations of the >1-MeV neutron flux for a typical reactor core/pressure vessel geometry were also carried out. These calculations employed the UEn (n = 6, 10, 12, 18, and 24) quadratures and indicate that the UEn solutions have converged to within ~0.5%. The UE24 solutions were also found to be more accurate than the calculations performed with the S16 level-symmetric quadratures.