ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
C. J. Jackson, D. G. Cacuci, H. B. Finnemann
Nuclear Science and Engineering | Volume 131 | Number 2 | February 1999 | Pages 164-186
Technical Paper | doi.org/10.13182/NSE99-A2026
Articles are hosted by Taylor and Francis Online.
A dimensionally adaptive, automatic switching algorithm is presented that has been developed for the RELAP5/PANBOX coupled thermal-hydraulics and neutron kinetics code system to switch between three-dimensional (3-D), one-dimensional (1-D), and point neutron kinetics models during a transient calculation. The switching criteria from higher- to lower-dimensional models are based on the time evolution of the flux shape, while the switching criteria from lower-dimensional models to the 3-D model are based on error estimates and reactivity criteria. Calculations of main-steam-line-break, control-rod-ejection, and boron-dilution transients have been used to validate the dimensionally adaptive automatic switching algorithm. These validation calculations show that the results produced by the automatic switching algorithm retain the accuracy of the 3-D reference calculations. Notably, they are considerably faster, typically requiring only 30 to 70% of the CPU time needed by the 3-D reference calculations. Furthermore, our calculations confirm that a 3-D neutron kinetics model is indeed required for these reactor safety transients by showing that the point-kinetics and 1-D models are by themselves very inaccurate.