ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
W. Zobel, F. C. Maienschein, J. H. Todd, and G. T. Chapman
Nuclear Science and Engineering | Volume 32 | Number 3 | June 1968 | Pages 392-406
Technical Paper | doi.org/10.13182/NSE68-A20222
Articles are hosted by Taylor and Francis Online.
Determining the contribution of secondary gamma rays to the radiation dose produced by charged particles in space requires a knowledge of the cross sections for gamma-ray production by protons and alpha particles. The only data of this type that have been available have been for ∼145-MeV protons. In the experiment reported here, gamma-ray spectral measurements were made for protons of 16, 33, 56, and 160 MeV and alpha particles of 59 MeV incident on targets of low- and medium-Z materials. Absolute spectra were obtained, generally in the backward direction, with coincidence (pair) or anticoincidence (total-absorption) scintillation spectrometers. The analysis method used to correct for the imperfect spectrometer response yielded quantitative error estimates for the resultant spectra. A few measurements were made in the forward direction or at 90° to distinguish deviations from isotropy which were marked only for 16-MeV protons incident on a carbon target. From the spectra, cross sections were obtained for the production of specific gamma rays. Tables of these results include the probable nuclear reactions which produced the gamma rays. The production cross sections are plotted vs the average proton energy in the target for individual gamma rays for C and O. For each element, these individual production cross sections are added and the sums, which decrease with increasing proton energy, are compared with the total nonelastic cross sections predicted on the basis of intranuclear cascade calculations. The reasonably smooth variations of the total cross sections for gamma-ray production with atomic number are also shown. The proton inelastic scattering cross sections for specific levels correspond within error to 14-MeV neutron scattering data.