ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
R. Kladnik
Nuclear Science and Engineering | Volume 32 | Number 3 | June 1968 | Pages 370-376
Technical Paper | doi.org/10.13182/NSE68-A20219
Articles are hosted by Taylor and Francis Online.
Some optical properties of neutron diffusion waves are discussed. Expressions are given for the change in the direction of propagation of the wave components reflected and refracted at the interface between two semi-infinite media by using appropriate formulae for the refraction of the electromagnetic waves in conducting media. It was found that the phase speed of the refracted asymptotic wave depends upon the direction of propagation. This dependence is especially noticeable in graphite/light-water systems. The phase speed is practically constant in graphite/ heavy-water systems. The results predict the existence of the total reflection of the asymptotic wave on the graphite/vacuum interface, providing the incidence angle is larger than ∼23°. Experimental verification of the diffusion wave refraction is suggested.