ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
L. B. Miller, G. H. Miley
Nuclear Science and Engineering | Volume 40 | Number 3 | June 1970 | Pages 438-448
Technical Paper | doi.org/10.13182/NSE70-A20195
Articles are hosted by Taylor and Francis Online.
A Monte Carlo method for the analysis of the Doppler effect has been developed which employs special perturbation techniques to compute effects due to changes in both the temperature and the diameter of fuel rods. These techniques facilitate the application of Monte Carlo to this type of problem and make possible the elimination of approximations inherent in earlier analytic and numerical methods. Numerical results obtained by this method are in good agreement with previously reported measurements on ZPR-III. The method has been applied to the study of the effect of fuel diameter on the Doppler coefficient in a typical fast reactor. Reducing the fuel diameter in a sodium-cooled uranium-carbide reactor from 0.30 to 0.15 cm was found to increase the Doppler coefficient 13%.