ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DOE-EM awards $74.8M Oak Ridge support services contract
The Department of Energy’s Office of Environmental Management has awarded a five-year contract worth up to $74.8 million to Independent Strategic Management Solutions for professional support services at the Oak Ridge Office of Environmental Management site in Oak Ridge, Tenn.
R. A. Karam, K. D. Dance, T. Nakamura, J. E. Marshall
Nuclear Science and Engineering | Volume 40 | Number 3 | June 1970 | Pages 414-423
Technical Paper | doi.org/10.13182/NSE70-A20193
Articles are hosted by Taylor and Francis Online.
An integral transport method was developed and applied to the calculation of the central reactivity worths of various samples measured in a 2700-liter uranium-carbide fast core and in a 4000-liter UO2 fast core. The method was used to obtain corrections to multigroup first-order perturbation calculations, incorporating self-shielding effects inside and outside the sample, as well as scattering, fission, and edge-effect perturbations. Resonance interaction between a 238U sample and the 238U in the core as well as resonance self-shielding in the sample itself were explicitly considered. A similar treatment was used for 235U samples. ENDF/B data were used in all of the analyses. The calculated central worths of 10B and tantalum were in very good agreement with the measured values, indicating that the calculated value of βeff used to convert percent Δk/k to period measurements was reasonably accurate. The calculated worths of 235U were 5 to 10% greater than the measured values. The discrepancy between the calculated and measured values for 238U was 15 to 20%. The discrepancy for graphite in particular and scatterers in general was rather large, indicating that the distribution of the adjoint function is not adequately calculated.