ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
House, Senate bills aim to improve nuclear decommissioning and waste disposal
Two bills were introduced in the last several weeks aiming to address nuclear power at the end of life—decommissioning plants and recycling used fuel.
Grover Tuck, Harold E. Clark
Nuclear Science and Engineering | Volume 40 | Number 3 | June 1970 | Pages 407-413
Technical Paper | doi.org/10.13182/NSE70-A20192
Articles are hosted by Taylor and Francis Online.
Critical parameters are reported for uranium-solution systems consisting of equally spaced vertical cylinders arranged in a square array resting on the bottom of a 20.3-cm-high square slab tank. Some of these systems were reflected externally. Both the cylinders and the slab contained uranyl-nitrate solution having 490 g of uranium (93.2 wt% 235U)/liter. A system of an 87-cm-high array of sixteen 11.0-cm-diam cylinders on an 11.4-cm-thick solution slab was critical. The slab alone was critical at 12.8 cm. Another critical system was a single 22.4-cm-diam cylinder of effectively infinite height on a solution slab 10.8-cm thick. The 22.4-cm diameter is 93.7% of the critical diameter for an infinite cylinder. Monte Carlo calculations, simulating several typical experimental critical systems, yielded values for keff between 0.958 ± 0.012 and 0.986 ± 0.009.