ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
E. Pfletschinger, F. Käppeler
Nuclear Science and Engineering | Volume 40 | Number 3 | June 1970 | Pages 375-382
Technical Paper | doi.org/10.13182/NSE70-A20188
Articles are hosted by Taylor and Francis Online.
The fission cross-section ratios 239Pu: 235U, 233U: 235U have been measured as a function of neutron energy between 5 keV and 1 MeV with an accuracy between 1.5 and 3%. Fission events were detected in 4 π-geometry by means of argon-filled gas scintillation chambers. The neutron energy has been determined by the time-of-flight technique. The results were compared with the evaluations of Davey. For the ratio 239Pu: 235U there is fairly good agreement between the measured values and the evaluation of Davey, except in the energy region between 200 and 800 keV. There, our values are ∼2 to 4% lower than those of Davey. The 233U: 235U ratio agrees with Davey's curve for neutron energies <60 keV. Above this energy, our results are ∼5% higher than the evaluated curve of Davey.