ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
H. Kschwendt
Nuclear Science and Engineering | Volume 44 | Number 3 | June 1971 | Pages 423-434
Technical Paper | doi.org/10.13182/NSE71-A20173
Articles are hosted by Taylor and Francis Online.
A synthesis and generalization of several recently developed methods for the numerical solution of the neutron transport equation in a homogeneous slab, assuming anisotropic scattering and energy dependence is presented. The generalization lies in the explicit inclusion of anisotropic scattering. After a Fourier transformation, a system of linear integral equations is obtained, the kernal of which is expanded in spherical Bessel functions. To process the final result in the direction of numerical evaluation, an approximation is proposed that results in the SPN - PL method where the flux is given by a double sum over spatial and angular Legendre polynomials. The expansion coefficients are determined from a system of linear integral equations. Treating the energy dependence by means of the multigroup concept, this system is reduced to a linear system of algebraic equations. Corresponding matrix elements depend on the optical thickness of the slab and can be computed from expansions available for arbitrary slab thicknesses. The SPN - PL method is of great practical importance since it is possible to obtain the solution of the transport equation with low computational effort. For example, assuming monoenergetic neutrons and isotropic scattering, the first and second eigenvalues of the transport equation can both be obtained with five exact digits from 3 × 3 or 4 × 4 matrices. The influence of the mean value of the linear anisotropy on the first and second eigenvalue and the decay constant is studied in detail. The validity of our approach is confirmed by comparing it with the SN and other methods. For certain mean values and optical thicknesses the second eigenvalue is found to be a complex number. Critical flux distribution is determined with great accuracy and shows perfect agreement with other published values. The flux due to a δ source, and a combination of a δ source with a flat one, is analyzed; it is confirmed that the SPN - PL method is not only applicable to small systems, but also (in most cases) to very large assemblies.