ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Yong-Deok Lee, Naeem M. Abdurrahman, Robert C. Block, Donald R. Harris, Rudy E. Slovacek
Nuclear Science and Engineering | Volume 131 | Number 1 | January 1999 | Pages 45-61
Technical Paper | doi.org/10.13182/NSE97-100
Articles are hosted by Taylor and Francis Online.
The neutron slowing-down-time method for nondestructive assay of light water reactor spent fuel has been under development for many years. Results for a newly optimized design of a lead slowing-down-time spectrometer for spent-nuclear-fuel assay are presented. Monte Carlo analyses were performed to optimize the design of the assay device, determine its main parameters, investigate the effects of the spent-fuel assembly and the detector impurities on its performance, determine the fission signatures of the fissile isotopes in spent-fuel elements, and simulate the assay signal as a function of the slowing-down time, assuming threshold fission chambers for the assay detectors. The assay signals from the threshold detectors were analyzed to predict the unknown masses of the fissile isotopes in a typical spent commercial light water reactor fuel element. The broadened resolution of the system caused by the presence of the spent fuel inside the spectrometer pile was found sufficient to separate the signatures of the U and Pu fissiles in spent fuel.