ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
W. G. Davey
Nuclear Science and Engineering | Volume 44 | Number 3 | June 1971 | Pages 345-371
Technical Paper | doi.org/10.13182/NSE71-A20166
Articles are hosted by Taylor and Francis Online.
Experimental values (apart from thermal-neutron data) of the number of prompt neutrons per fission () for 232Th, 233U, 234U, 235U, 238U, 239Pu, 240Pu, and 241Pu over the energy range from 0 to 15 MeV up to February 1970 are evaluated to derive the best available data, primarily for fast reactor analysis. Limited comments are made on data published subsequently. Data are renormalized where necessary to the latest recommended value (3.756) for for 252Cf. Many of the existing lower energy data for 233U and 235U indicate a nonlinear energy dependence that would be of significance for fast reactor analysis, but a limited number of recent specific studies on 235U strongly support linear dependence, and the existence of low-energy structure is not established. The more limited low-energy measurements on 239Pu indicate little, if any, structure. At energies above several MeV the normally assumed linear energy dependence of is more applicable, but the occurrence of the (n, n′f) and (n, 2nf) reactions in addition to the (n, f) reaction introduces a nonlinear dependence that is generally small but may be of significance for some isotopes. Consideration of the effects of first-. second-, and third-chance fission [(n, f), (n, n′f), and (n, 2nf) reactions] gives a good fit to the single case, 235U, in which a test can be made and these effects are considered in the evaluation of other isotopes.